UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

ISSUES OF PHYSICAL CHEMISTRY

2018-2019

LESSON 1

- 1. Classify each magnitude as extensive or intensive:
 - **a**) Temperature
 - **b**) Mass
 - c) Refractive index
 - d) Molar volume
- 2. Justify whether the following statements are true or false:
 - **a**) Δ H is a state function.
 - **b**) C_V of an ideal gas is independent of temperature.
 - c) Q = 0 in a cyclic process.
 - **d**) In a closed system with only PV work, a process at constant pressure with q > 0 must imply $\Delta T > 0$.
- **3.** Justify, using the appropriate equations, whether the following statements are true or false:
 - a) The magnitudes H, U, PV, Q, W, Δ H and P Δ V have all the same dimensions.
 - **b**) Δ H is only defined for a process at constant pressure.
 - c) In a process at constant volume for a closed system: $\Delta H = \Delta U$.
 - **d**) Heat of an irreversible change from state 1 to state 2 may be different from heat of the same state change performed reversibly.
- **4.** Determine if the following quantities: q, w, V, ΔH , ΔU , ΔS , are higher, lower or equal to zero for the following processes:
 - a) Reversible ice melting at 0°C and 1 atm.
 - **b**) Reversible isobaric cooling of an ideal gas
 - c) Reversible and isochoric heating of a solid.

Justify your answer using the appropriate equations.

- **5.** Justify, using the appropriate equations, whether the following statements are true or false:
 - a) Work can always be calculated through the following expression:

W=-nRT log
$$\frac{V_2}{V_1}$$

b) The following equation enables the calculation of the variation of the system internal energy in any process:

$$dU = Cv dT$$

c) When an ideal gas undergoes a transformation in which the thermodynamic variables: pressure, volume and temperature are not constant, the variation of enthalpy of the process must be calculated through the following expression:

$$\Delta H = R \Delta T$$

d) The following equation can be applied in any system and for any process:

$$\Delta S = \frac{\Delta H}{T}$$